

Cambridge IGCSE[™](9–1)

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

6583211856

CO-ORDINATED SCIENCES

0973/31

Paper 3 Theory (Core)

May/June 2024

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 28 pages. Any blank pages are indicated.

DC (SL) 342792 © UCLES 2024

[Turn over

BLANK PAGE

1 (a) Fig. 1.1 shows the parts of a human tooth.

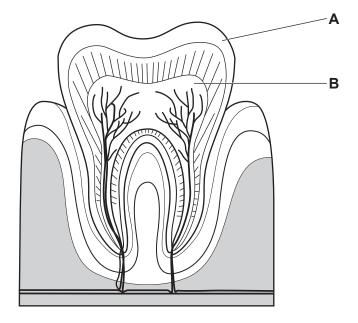


Fig. 1.1

(i)	State the names of the parts labelled A and B in Fig. 1.1.	
	A	
	В	
(ii)	State the type of digestion that teeth are responsible for.	[Z
		[1

(b) Cavities are holes in the teeth caused by poor care of teeth.

A survey records the average number of cavities that 12-year-old school students have in one school.

Every five years, the survey is repeated with another group of 12-year-olds in the same school.

Fig. 1.2 shows a bar chart of the results.

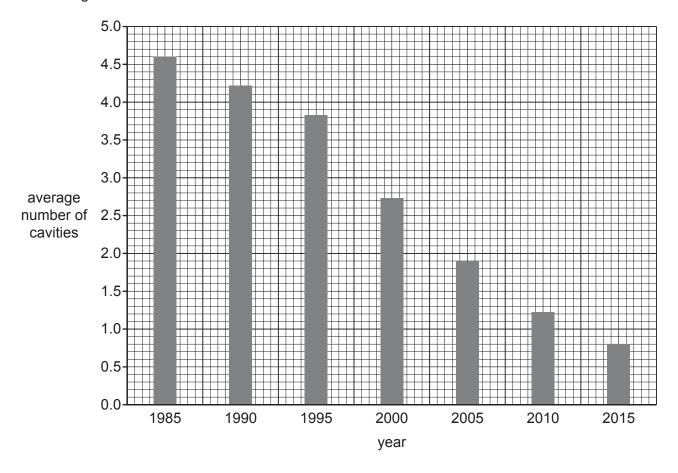


Fig. 1.2

(i) Calculate the percentage decrease in the average number of cavities between **1985** and **2015** in Fig. 1.2.

average number of cavities in 1985	
average number of cavities in 2015	

	(ii)	Suggest three reasons for the trend seen in Fig. 1.2.
		1
		2
		3
		[3]
(c)	The	mouth has a good supply of blood.
	List	two main components of blood.
	1	
	2	[2]
		[4]

[Total: 10]

2 (a) A list of metals is shown.

aluminium
copper
iron
lead
magnesium
platinum
sodium

Identify from the list the metal that is:

(i)	found in Group I of the Periodic Table.	
		[1]
(ii)	extracted from the ore bauxite.	
		[1]
(iii)	the main metal in the alloy steel.	
		[1]
(iv)	used as inert electrodes in electrolysis.	
		[1]
	ole 2.1 gives some information about the rate of reaction of four metals with cold water and dilute hydrochloric acid.	and

Table 2.1

metal	rate of reaction with cold water	rate of reaction with dilute hydrochloric acid
copper	no reaction	no reaction
iron	no reaction	reacts slowly
magnesium	reacts very slowly	reacts very quickly
zinc	no reaction	reacts quickly

(i)	Deduce the	order	of	reactivity	of	the	four	metals	from	the	most	reactive	to	the
	least reactive) .												

most reactive	
V	
least reactive	

[2]

(ii) Only magnesium in Table 2.1 reacts with cold water.

Suggest one other metal, not from Table 2.1, that reacts quickly with cold water.

[1]

(iii) In an experiment, magnesium reacts with dilute hydrochloric acid as shown in Fig. 2.1.

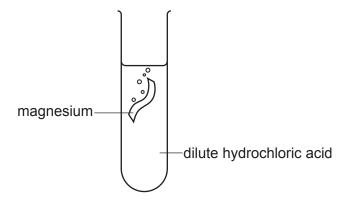


Fig. 2.1

State **two** ways of changing the **dilute hydrochloric acid** to make the reaction faster.

(iv) The word equation for the reaction between magnesium and dilute hydrochloric acid is shown.

magnesium + hydrochloric acid → magnesium chloride + hydrogen

Complete the balanced symbol equation for this reaction.

$$\label{eq:mg} \mbox{Mg +} \mbox{HC} l \rightarrow \mbox{MgC} l_2 + \mbox{H}_2 \end{mag} \mbox{ [1]}$$

[Total: 10]

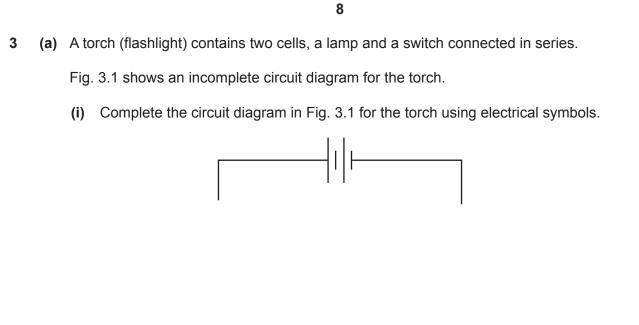


Fig. 3.1

[2]

(ii) A voltmeter is connected to measure the potential difference across the lamp. Add a voltmeter to your circuit diagram in Fig. 3.1 using the correct electrical symbol. [2] (iii) Fig. 3.2 shows a cell and lamp used in the torch.

Fig. 3.2

Use information from Fig. 3.2 to explain why two cells are used to light the lamp.

(iv) Use information from Fig. 3.2 to calculate the resistance of the lamp when lit.

		resistance = Ω	[2]
	(v)	The cell provides an electromotive force (e.m.f.) to the circuit.	
		Complete the sentence.	
		The e.m.f. of an electrical source of energy is measured in	[1]
)	Fia	3.3 shows a single ray of light from the torch shining on a mirror	

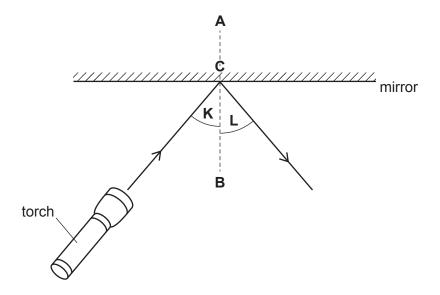
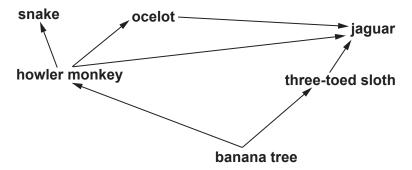



Fig. 3.3

(i)	State the relationship between angle K and angle L .	
		[1]
(ii)	State the name of the dotted line AB .	- 4 -
,,,,,		[1]
(iii)		
		[1]

[Total: 11]

4 (a) Fig. 4.1 shows a food web from a rainforest environment.

	Fig. 4.1	
(i)	Construct a food chain from Fig. 4.1 that includes the snake.	
		[2]
(ii)	Use Fig. 4.1 to identify one :	[2]
(,	herbivore	
	tertiary consumer.	
	tertiary consumer.	[2]
(iii)	Removal of banana trees can cause the extinction of three-toed sloths.	
	List two other undesirable effects of deforestation.	
	1	
	2	
		[2]
Bar	nana trees are producers that make their own carbohydrates.	[-]
	ate the two raw materials that producers need to make their own carbohydrates.	
		[2]

© UCLES 2024 0973/31/M/J/24

(b)

(C)	A student makes a statement:
	'All carnivores are consumers but not all consumers are carnivores.'
	Explain this statement.
	[2]
(d)	State the name of the type of organism that gets its energy from dead organic matter.
	[1]
	[Total: 11]

5 (a) Ice is a solid. Water is a liquid. Steam is a gas.

Fig. 5.1 shows the different arrangement of the particles in ice, water and steam.

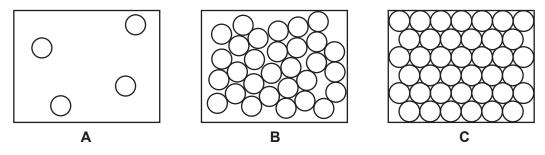


Fig. 5.1

State and explain which diagram, $\bf A$, $\bf B$ or $\bf C$, shows the arrangement of particles in ice, water or steam.

ice is diagram
explanation
water is diagram
explanation
steam is diagram
explanation
[3]
A few drops of water are left in a cup in a warm room.
After a few hours, no water is left in the cup.
State the name of the process that has occurred.
[1]
Water is neutral.
State the pH number of pure water.
pH =[1]

© UCLES 2024 0973/31/M/J/24

(b)

(c)

	13			
(d)	State why chlorine is added to water to make it safe to drink.			
		[1]		
(e)	The electronic structures for oxygen and hydrogen are shown in Fig. 5.2.			
	(O) H			
	Fig. 5.2			
	Complete the dot-and-cross diagram in Fig. 5.3 to show the arrangement of electrons in a molecule of water.			
	Show the outer-shell electrons only.			
	Н			
	Fig. 5.3	[2]		
(f)	Sodium chloride is a solute. Water is a solvent.			
	Define the terms solute and solvent.			
	solute			

[Total: 10]

[2]

6 (a) A train travels between two stations X and Y.

Fig. 6.1 shows a speed–time graph for the journey.

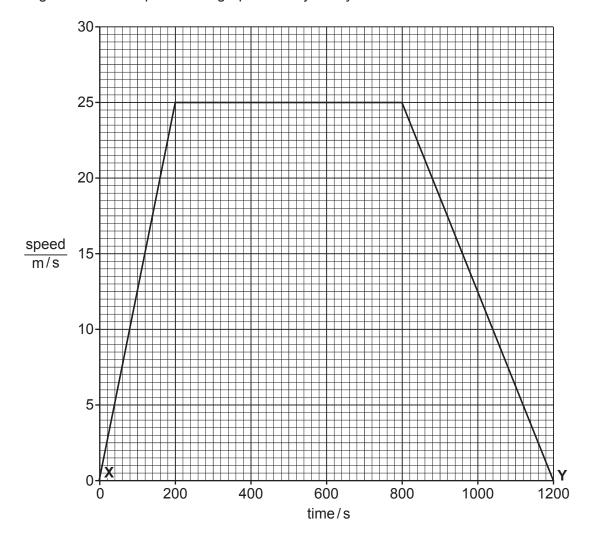


Fig. 6.1

(i) State the time taken for the journey from station **X** to station **Y**.

- (ii) On Fig. 6.1, mark with the letter **C** a point on the graph when the train is travelling at a constant speed. [1]
- (iii) Calculate the distance travelled by the train between station **X** and station **Y**.

distance = m [3]

(b) Fig. 6.2 shows some railway track.

Railway track is made of lengths of steel rails with small gaps between them.

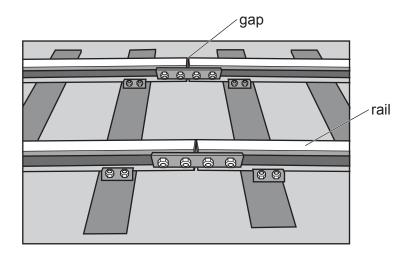


Fig. 6.2

(i)	Explain why leaving gaps in the rails avoids damage to the track in hot weather.	
(ii)	A length of steel rail has a weight of 10270 N.	[1]
(")	The density of steel is 7870 kg/m ³ .	
	Calculate the volume of steel used to make the steel rail.	
	The gravitational force <i>g</i> on unit mass is 10 N/kg.	

volume =
$$m^3$$
 [3] [Total: 9]

7 (a) Fig. 7.1 shows a cross-section through human skin.

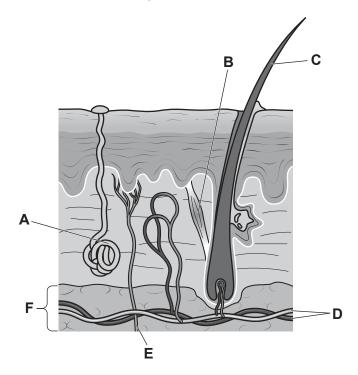


Fig. 7.1

(i) Table 7.1 shows some information about two of the parts labelled in Fig. 7.1.

Complete Table 7.1.

Table 7.1

letter in Fig. 7.1	name	role in maintenance of internal body temperature
		produces sweat
		contracts to erect hair

[4]

(ii) A human has a fat layer in the skin of 3 cm.

A whale has a fat layer in the skin of 50 cm.

Explain why whales are better adapted to a cold environment.

(b) Tick (\checkmark) two boxes to show the role of the **brain** in the maintenance of internal body temperature.

has receptors that detect changes in blood temperature	
contracts to trap air to increase body temperature	
coordinates response to changes in temperature	
acts as insulation to decrease body temperature	
shivers to increase body temperature	
sweats to decrease body temperature	

(c)	State the word that is used to describe the maintenance of a constant internal environment	
	[1]	
	[Total: 9]	

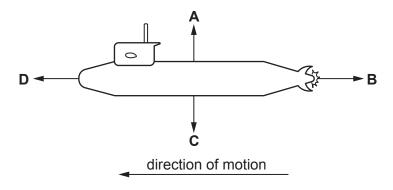
[2]

8 (a) Petroleum is separated into different fractions.

Table 8.1 shows the percentage composition of a 500 kg sample of petroleum.

Table 8.1

fraction	percentage
X	10
gasoline (petrol)	30
naphtha	30
diesel oil	26
bitumen	4


(i)	Identify fraction X.	[41]
(ii)	Most of the fractions are used as fuels.	[1]
	State one other use for the naphtha fraction.	
		[1]
(iii)	State the name of the process used to separate petroleum into different fractions.	
		[1]
(iv)	Calculate the mass of diesel oil obtained from the 500 kg sample of petroleum.	
	mass of diesel oil =kg	[1]
(v)	State the two chemical elements present in the molecules of the fractions in Table 8.	1.
	and	[2]

(b) (i) Petroleum is a fossil fuel.	
	State the name of one other fossil fuel.	
		[1]
(ii) When fossil fuels are burned, carbon dioxide is made.	
	Carbon dioxide is a greenhouse gas.	
	State the name of one other greenhouse gas.	
		[1]
(iii) Burning fossil fuels is a chemical change.	
	State two differences between a chemical change and a physical change.	
	1	
	2	
		[2]

[Total: 10]

9 (a) Fig. 9.1 shows four forces acting on a submarine.

The submarine is moving underwater from right to left.

		Fig. 9.1	
	(i)	State which force A , B , C or D is the weight of the submarine.	
			[1]
	(ii)	Force B has the same magnitude as force D .	
		Describe the motion of the submarine.	
(b)	The	submarine is powered by a small nuclear reactor.	
	In th	ne nuclear reactor, energy is released by the nuclear fission of an isotope of uranium.	
	(i)	Describe what happens to an atom during nuclear fission.	
			[2]
	(ii)	Ionising radiation is released in the reactor during nuclear fission.	
		Suggest why the nuclear reactor is surrounded by a thick layer made of lead.	
			[1]

(c)	Ultr	asound waves have a frequency higher than the maximum audible frequency for a hum	an.
	(i)	The submarine uses ultrasound waves to calculate the depth of the water bel the submarine.	OW
		A pulse of ultrasound is sent through the water and reaches the sea floor after 0.8 s.	
		Ultrasound waves travel through seawater at a speed of 1550 m/s.	
		Calculate the distance of the sea floor below the submarine.	
		distance = m	[2]
	(ii)	Ultrasound waves are not part of the electromagnetic spectrum.	
		State the name of one region of the electromagnetic spectrum and give one use waves in this region.	for
		name	
		use	
			[2]

[Total: 9]

10 (a) Fig. 10.1 shows the activity of some bacterial enzymes at different temperatures.

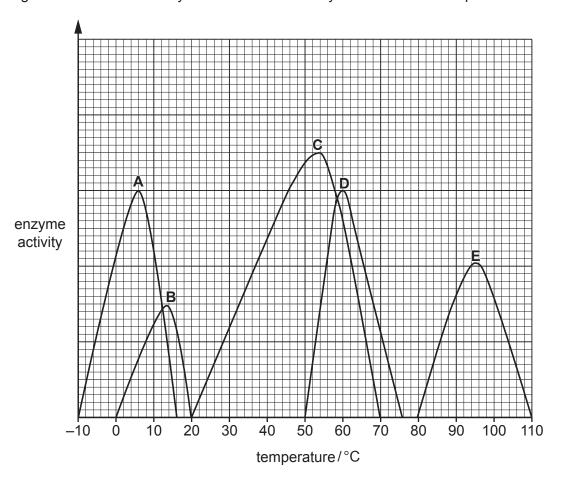


Fig. 10.1

		[4]
(d)	State the name of the solution used to test for the presence of protein.	
	oxygen nitrogen	[1]
	carbon calcium hydrogen	
	Circle the elements that all proteins are made from.	
(c)	Enzymes are proteins.	
		[1]
(b)	State one factor, other than temperature, that affects enzyme activity.	
	The enzyme active over the greatest range of temperatures is enzyme	[4]
	The greatest activity for enzyme E is at°C.	
	The only two enzymes active at 60 °C are enzymes and	
	Complete the sentences to describe the results in Fig. 10.1.	

(e) The boxes on the left show some biological molecules.

The boxes on the right show the smaller molecules they are made from.

Draw lines to link each biological molecule to **all** the smaller molecules they are made from.

fats and oils

fatty acids

glycogen

glucose

protein

glycerol

[Total: 10]

[3]

BLANK PAGE

11	(a)	A ca	A calcium atom has a proton number of 20 and a nucleon number of 40.												
		Ded	uce the number of protons, neutrons and electrons in this atom of calcium.												
		num	number of protons												
		num	ber of neutrons												
		num	ber of electrons	[3]											
	(b)	Whe	When calcium atoms react, they change into calcium ions, Ca ²⁺ .												
		Des	cribe how calcium atoms change into calcium ions.												
				. [2]											
	(c)		e is produced from limestone, calcium carbonate, by thermal decomposition.												
		(i)	State the chemical name for lime.	[41											
		(ii)	State the name of the gas formed in this thermal decomposition reaction.	. [1]											
		(11)	State the name of the gas formed in this thermal decomposition reaction.	[1]											
		(iii)	Explain why farmers spread limestone onto soil that is used for growing crops.	. [.]											
				. [1]											
	(d)	The	main compound in limestone is calcium carbonate, CaCO ₃ .												
		(i)	State the number of different elements in calcium carbonate.												
				. [1]											
		(ii)	State the total number of atoms shown in the formula CaCO ₃ .												
				. [1]											
			[Total	: 10]											

12	(a)	The driver of a car fills the fuel tank with gasoline (petrol).												
		As t	he gasoline flows into the fuel tank, the gasoline becomes charged.											
		(i)	State the force that causes the gasoline to become charged. [1]											
		(ii)	State the name and the charge on the particles transferred when the gasoline becomes charged.											
			name											
			charge[2]											
	(b)	Some of the gasoline spills onto the hand of the driver.												
		The gasoline evaporates and the driver's hand cools down.												
		Explain this cooling effect.												
		Use ideas about molecules in your answer.												
			יכו											
			[2]											
	(c)	(i)	During a journey in the car, the car engine transfers $5.8 \times 10^7 \text{J}$ of useful energy to the car.											
			State the work done on the car by the car engine.											
			State the unit of your answer.											
			work done = unit [2]											
		(ii)	During the journey, the air in the tyres of the car warms up.											
			Describe what happens to the motion of the air particles in the tyres as the air warms up.											
			[1]											

(d) The windscreen wipers on the car are powered by an electric motor.

	turning effect of easing the magn			coil	in	the	electric	motor	can	be	increased	by
(i)	State one other	way to	increase the tur	ning	eff	ect o	on the co	oil.				

[Total: 11]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

S
7
9
≥
Ę
$\underline{}$
Ш
4
0
Φ
5
Ta
`^
≅
ठ
.0
Ē
a
а.
The
_
\vdash

\	2	운	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	씸	radon	118	Og	oganesson	ı
				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	B	bromine 80	53	Ι	iodine 127	85	Αt	astatine -	117	<u>S</u>	tennessine	1
>				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъо	moloulum -	116	^	livermorium	1
>				7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>.</u>	bismuth 209	115	Mc	moscovium	1
≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium	ı
=				2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204	113	R	nihonium	-
										30	Zu	zinc 65	48	ပ္ပ	cadmium 112	80	БĤ	mercury 201	112	C	copernicium	1
										29	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium	ı
										28	Z	nickel 59	46	Pd	palladium 106	78	₫	platinum 195	110	Ds	darmstadtium	1
										27	ဝိ	cobalt 59	45	R	rhodium 103	77	٦	iridium 192	109	₩	meitnerium	ı
	_	エ	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium	1
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	pohrium	1
					loc	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium	ı
			Key	atomic number	mic syml	name tive atomic ma				23	>	vanadium 51	41	Q Q	niobium 93	73	L	tantalum 181	105	Ор	dubnium	ı
					ato	rela				22	ı	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	짪	rutherfordium	ı
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids		
=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ва	barium 137	88	Ra	radium	1
_				3	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium	ı
		III N N N NI III		1	III IV V VI VII Hydrogen T Rey T Rey	II	Key Limitagen atomic number atomic mass Key VII VII VIII VIII	Key III IV V VI VII 4 atomic number atomic name relative atomic mass atomic Symbol name relative atomic mass E 6 7 8 9 F beryllium relative atomic mass atomic symbol name relative atomic mass boron carbon nitrogen name relative atomic mass boron carbon nitrogen	III	III	II	III	III	II	III	1 1 1 1 1 1 1 1 1 1	II	1	1 1 1 1 1 1 1 1 1 1	II	1	III

r ₁	lutetium 175	103	۲	lawrencium -	
۶ ۲b	ytterbium 173	102	8 N	nobelium –	
ee Tm	thulium 169	101	Md	mendelevium -	
₈₈ <u>п</u>	erbium 167	100	Fm	fermium -	
67 Ho	holmium 165	66	Es	einsteinium -	
® Dy	dysprosium 163	86	Ç	californium -	
e5 Tb	terbium 159	97	BK	berkelium -	
² Gd	gadolinium 157	96	Cm	curium	
e3 Eu	europium 152	92	Am	americium -	
ss Sm	samarium 150	94	Pu	plutonium	
e1 Pm	promethium	93	Ν d	neptunium -	
9 P N	neodymium 144	92	\supset	uranium 238	
59 Pr	praseodymium 141	91	Ра	protactinium 231	
Se Ce	cerium 140	06	드	thorium 232	
57 La	lanthanum 139	89	Ac	actinium	

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).